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Abstract
Disease occurrence, clinical manifestations, and outcomes differ between men and women. Yet, women and men are most of the
time treated similarly, which is often based on experimental data over-representing one sex. Accounting for persisting sex bias in
biomedical research is the misconception that the analysis of sex-specific effects would double sample size and costs. We
designed an analysis to test the potential benefits of a factorial study design in the context of a study including male and female
animals. We chose a 2 × 2 factorial design approach to study the effect of treatment, sex, and an interaction term of treatment and
sex in a hypothetical situation. We calculated the sample sizes required to detect an effect of a given magnitude with sufficient
power and under different experimental setups. We demonstrated that the inclusion of both sexes in experimental setups, without
testing for sex effects, requires no or few additional animals in our scenarios. These experimental designs still allow for the
exploration of sex effects at low cost. In a confirmatory instead of an exploratory design, we observed an increase in total sample
sizes by 33%, at most. Since the complexities associated with this mathematical model require statistical expertise, we generated
and provide a sample size calculator for planning factorial design experiments. For the inclusion of sex, a factorial design is
advisable, and a sex-specific analysis can be performed without excessive additional effort. Our easy-to-use calculation tool
provides help in designing studies with both sexes and addresses the current sex bias in preclinical studies.

Key messages
• Both sexes should be included into animal studies.
• Exploratory study of sex effects can be conducted with no or small increase in animal number.
• Confirmatory analysis of sex effects requires maximum 33% more animals per study.
• Our calculation tool supports the design of studies with both sexes.
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Introduction

Differences between the sexes have long been neglected in
biomedical research. This was often based on the assump-
tion that results from one sex can simply be applied to the
other sex. Concerns that the estrous cycle in females might
increase phenotypic variance and thereby decrease the sta-
tistical power, which is needed to detect the primary effect,
then led to an over-reliance on male subjects [1]. Both
assumptions have essentially been disproven [2–4].
Indeed, an increasing number of studies indicate that sex
differences are substantial in drug responses, and also in
cardiovascular, neurological, and autoimmune disorders
[5, 6]. These studies have raised awareness that the over-
reliance on either male or female research subjects ob-
scures key sex differences. The resulting lack of data ham-
pers the accurate design of subsequent clinical trials.
Therefore, major funding agencies addressed this bias
and called for the analysis of any sex difference.
Accordingly, in 2014, the US National Institutes of
Health (NIH) developed the sex as a biological variable
(SABV) policy requiring sex- or gender-specific reporting
of research and issued a mandate for including both sexes
in all vertebrate studies [7, 8]. The Canadian Institutes of
Health Research [9], the European Commission’s Horizon
2020 research program [10], and the gender policy com-
mittee of the European Association of Science Editors
made similar announcements [11, 12]. Despite these poli-
cies, many researchers in various disciplines still conduct
experiments with only one sex [13–19]. One prominent
reason for the use of only one sex in basic and translational
animal research is the pressure to reduce the number of
animals according to the “3R” principle (3R = reduction,
refinement, replacement) [20]. Thus, scientists currently
find themselves in the dilemma of having to minimize an-
imal consumption while still detecting a treatment effect
and having to maximize insight by including both sexes.

A study setup based on a conventional randomized single-
factor design does indeed require the duplication of sample
size in order to assess sex-specific effects. In contrast, the so-
called (balanced) factorial design, which uses the analysis of
variance (ANOVA), offers the possibility of analyzing the
influence of more than one categorical variable on the study
outcome. Previous work suggests that including an additional
experimental variable in a factorial design may yield supple-
mental information without causing a major increase in the
number of animals, thereby serving the 3R principle
[21–24]. Taking on the current challenge of implementing
sex-sensitive findings into research strategies, we investigated
the benefits of a factorial design in the context of a hypothet-
ical study with male and female animals. We assessed the
effect of sex as a second factor variable on the statistical power
and the number of animals required.

Results

The inclusion of sex as a second factor requires no
or only a few additional animals

For clarity in presentation, we restricted ourselves to the situ-
ation in which the primary objective is the identification of a
treatment effect. One detects such an effect using a 1-factor
(1f) ANOVA when comparing the observed outcomes of a
group of animals that received treatment with the outcomes
of a control group (either without treatment, with placebo, or
alternative drug treatment). The question we wanted to answer
is if it is recommendable to introduce a second factor, sex, to
the design of an animal experiment. Therefore, we discuss a
2 × 2 factorial design, in which we tested the influence of two
binary factor variables, treatment and sex, on a quantitative
outcome by use of 2-factor (2f) ANOVA. We will briefly
touch on possible extensions to more than 2 factors in the
“Discussion.”

ANOVA quantifies three effects: two main effects describ-
ing the average effect of treatment and the average effect of
sex, and the interaction effect describing the difference of
males and females in their response to treatment. When we
are only interested in testing for drug efficacy, we would per-
form only one test for the treatment effect (1f-ANOVA). By
performing a 2f-ANOVA, we gained additional information
about the existence and magnitude of the other two effects. Of
note, p values were not corrected for multiple testing and may
only serve for data exploration. We calculated the number of
animals needed in a 2 × 2 factorial design and compared them
to a 1f-ANOVA design (Fig. 1). We did this for various sce-
narios, using relative effect sizes of 0.4, 0.5, and 1, a test
power in the range of 80–90%, and a fixed significance level
of 5% (see Box I for a definition of these quantities). The
inclusion of sex as an additional factor did not lead to an
increase in the total sample sizes required for large relative
effect sizes and moderate power, compared to the 1f-
ANOVA. For smaller effect sizes or higher power, the increase
was small (at most 2 animals) (Table 1). Thus, restricting the
analysis to the primary factor, the inclusion of sex led to no or
only a few additional animals. This type of analysis allows for
an exploratory post hoc determination of a possible sex effect
and provides a basic concept for further studies.

Analysis of one additional factor, such as sex, leads
to a minimum of extra cost

When testing whether not only the primary factor but also
sex influences the outcome parameter, the analysis of an
additional factor requires the application of a multiple test-
ing correction (e.g., Bonferroni correction). This correction
influences the sample sizes and the power of the tests.
Figure 2 shows how total sample sizes change in the
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scenarios described in the previous paragraph. The inclu-
sion of a second factor and analysis by 2f-ANOVA with a
Bonferroni correction did not result in a substantial in-
crease in the number of animals required. The increase
ranged from 2 to 16 animals, or 14 to 33%, as compared
to 1f-ANOVA (Table 1). This type of analysis of sex ef-
fects, however, bears a considerable problem: any potential
interaction between sex and the primary factor is being
ignored. Instead one should use a model that estimates
the interaction between sex and the investigated parameter
as described in the following paragraph.

The inclusion of interaction effects is mandatory

The analysis of both sexes can be considered as good scien-
tific practice, even under consideration that only the minimum
number of animals should be used. In this form of analysis, an
interaction between sex and the primary factor can usually not
be excluded. Such interaction is commonly known as syner-
gism and means that the combined effect of the two factors is
greater (or smaller) than the plain sum of their individual ef-
fects. Awareness of sex-dependent synergisms is important, as
in the worst case a drug may be considered safe in one sex

Table 1 Sample size calculations in different experimental setups

Experiment Factor Relative effect size Total sample size Sample size increase compared
to 1f-ANOVA [%]

Treatment Sex Power 0.8 Power 0.85 Power 0.9 Power 0.8 Power 0.85 Power 0.9

1f-ANOVA C – 1 12 12 14 – – –

0.5 34 38 46 – – –

0.4 52 60 68 – – –

2f-ANOVAwithout interaction C e 1 12 12 16 0 0 14

0.5 36 40 48 6 5 4

0.4 52 60 68 0 0 0

2f-ANOVAwithout interaction C c 1 16 16 16 33 33 14

0.5 44 48 56 29 26 22

0.4 64 72 84 23 20 24

2f-ANOVAwith interaction C e 1 12 12 16 0 0 14

0.5 36 40 48 6 5 4

0.4 52 60 68 0 0 0

2f-ANOVAwith interaction C c 1 16 16 16 33 33 14

0.5 44 48 56 29 26 22

0.4 64 72 84 23 20 24

Comparison of sample sizes for different experimental setups. Factors were either tested confirmatory (c) or exploratory (e). Bonferroni correction is
always applied if both factors are tested confirmatory. Setups using ANOVAwithout interactions assume data without interactions as well

Fig. 1 Including sex as confounder in absence of interaction leads to
insignificant increases in total sample sizes. Comparison of total sample
sizes between analysis without inclusion of sex or with inclusion of sex as
a confounder. The modeled data has no interactions between the factors

studied; the ANOVA model assumes no interactions. The data is solely
analyzed for the primary factor, and no correction for multiple testing was
performed (sex not analyzed). For each effect size, 1 or 2 factors (e.g.,
primary factor plus/minus sex) were modeled
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while causing detrimental side effects in the opposite sex.
Therefore, designs of good animal experiments need to reveal
these effects.

We compared the power of 2f-ANOVAwithout interaction
and 2f-ANOVAwith interaction, applied to data with interac-
tion effects. In this scenario, we found a noticeable loss of
power in the 2f-ANOVA without interaction (Fig. 3a). This
loss depended on the size of the interaction effect, with higher

power loss correlating with stronger interactions. The reason
is that a model which lacks interactions incorrectly interprets
differences between groups, due to interactions, as noise. The
only way to overcome this loss of power is to include interac-
tions in the model. Next, we modeled the total sample sizes
needed for 2f-ANOVA with and without interaction applied
on data that show no interaction between treatment and sex.
The 2f-ANOVAwith interaction required a larger total sample

Fig. 3 Exclusion of interaction in
the ANOVA model decreases
power, but its inclusion comes
with little cost. 2f-ANOVAwith
or without interaction was used
for the modeling. The interaction
effect of the data set varies from
1% (light gray) to 50% (black).
The second factor (sex) was
treated as confounder. a Power
versus total sample size, based on
the data set with interactions.
ANOVAwith interaction (white
dots) and without interaction
(light gray to black dots). b Total
sample size needed in dependence
of power, based on a data set
without interactions using a
model with interaction. ANOVA
with interaction (black dots) or no
interaction effect (red dots, correct
situation) were modeled

Fig. 2 Inclusion of sex as analyzed variable in absence of interaction
leads to moderate increases in total sample sizes. Comparison of total
sample sizes between analysis without inclusion of sex or with
inclusion of sex as a second analyzed variable without interaction
effects. The modeled data has no interactions between the factor studied

and sex. TheANOVAmodel assumes no interactions between the factors.
A post hoc correction (Bonferroni) for multiple comparison was
performed to include sex as analyzed variable. For each effect size, 1 or
2 factors were modeled
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size only for an intermediate power of 0.84 (Fig. 3b). In com-
parison to a 1f-ANOVA of an experiment with one sex only, a
2f-ANOVAwith interaction on a two-sex experiment, sex as
confounder, requires at most two additional animals,
amounting to a maximum increase of 14% in the total number
of animals (Table 1).

Taken together, applying 2f-ANOVAwithout interaction in
a situation where interactions cannot safely be excluded re-
sults in a major drop of power. This means that one might fail
to find true effects of the primary factor or sex. On the other
hand, applying 2f-ANOVAwith interaction on data where no
interactions are present comes along with little to no additional
costs. Thus, the interaction model is clearly preferable.

Testing for sex effects considering sex-specific
interactions comes at reasonable costs

Next, we calculated the number of animals required for an
experiment investigating the primary factor and sex effects
in an appropriately powered confirmatory experiment using
2f-ANOVA with interaction and Bonferroni correction. We
compared this setup with an experimental one in which only
one sex, either male or female, was included and analyzed by
use of 1f-ANOVA. Again, we investigated three different ef-
fect sizes (remark: the size of the interaction effect does not
influence the total sample size in the 2f-ANOVAwith interac-
tion). In our simulations with fixed effect sizes, significance
level, and power, the increase in total sample size amounted to
2–16 animals, or 14–33% (Fig. 4 and Table 1).

Recommendations for the researcher

According to current policies, the inclusion of both sexes
should become the standard procedure for all experimental
studies. Therefore, we recommend using one of the following
approaches:

& To perform a sex-aware analysis of the primary factor
effect, use 2f-ANOVA with interaction but without

Bonferroni correction. Estimated sex effects are of explor-
atory nature and may guide further studies.

& To perform a confirmatory analysis of both the primary
factor and sex effect, use 2f-ANOVAwith interactions and
with Bonferroni correction.

Bear in mind that it is mandatory to choose and fix the
analysis approach before having seen the data. Trying several
approaches and choosing “the best” afterwards will lead to a
violation of the significance level of the findings (over-opti-
mism, “p-hacking”).

One should further keep in mind the following general
points:

& The application of ANOVA requires the data in each
group to follow approximately normal distribution with
identical variance. Verifying (e.g., using historical data)
that an assumption is reasonable for the experiment in
question is vital.

& Since within-group variance, a crucial parameter of the
power calculation, is notoriously hard to guess, one should
use a conservative estimate (i.e., a number that rather over-
estimates the within-group variance).

& If sample sizes rule out an analysis in a single batch, it is
mandatory to use an experimental design that avoids
biases due to batch effects. For example, if you have a
sample size of 15 and perform the analysis on 3 days in
batches/blocks of 5, make sure to distribute each factor
(treatment/control, male/female) as evenly as possible
across all batches [25].

Power calculations for 2f-ANOVA made easy

Several tools provide researchers with support for power and
sample size calculations [26–30]. However, many of these
tools are restricted to 1f-ANOVA or are difficult to fill-in
and interpret by the practitioners.

To allow for easy power calculations for a 2f-ANOVA,
we implemented an Excel sheet for two factors

Fig. 4 Analyzing sex effects
including interaction moderately
increases sample sizes.
Comparison of sample sizes for
ANOVAwith interaction and with
Bonferroni correction to sample
sizes of a one-sex analysis. Total
sample size needed in dependence
of power. One-sex analysis (black
dots) versus two-sex analysis (red
dots)
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(Supplemental Material SX). It depends on the Excel
Package “Real Statistics” [31] which can be installed using
the instructions on the package’s webpage. The experi-
menter has to enter the expected mean value for the obser-
vations in each experimental group, the expected variance
within the groups, as well as the desired significance and
power level. Additionally, the user has to specify which
effects are to be tested confirmatory and which should be
considered exploratory. The total sample sizes are then
computed according to the user’s input (multiple testing
correction is automatically applied, if necessary). We re-
port the dependence of required total sample sizes as a
function of variance and power in additional table sheets.

Box I

For details on the used ANOVA formulas and the scripts
used for this study, please refer to Supplementary Methods
and Supplementary Scripts, respectively.

Discussion

Integrating sex as a factor into biomedical research is an es-
sential step towards precision medicine and tailored care for
women and men. The use of a factorial design in animal ex-
periments has been brought forward as an appropriate method
to include sex-specific information in experimental setups
(24). Indeed, in a retrospective investigation of published ex-
perimental data, Festing showed that all the experiments he
assessed had flawed statistical analyses and would have
benefited from the application of a factorial design and
ANOVA (15).

While such reanalysis of experimental data draws attention
to the problem of an inappropriate use of statistical tools and
(over)use of animals, it does not inform about the applicability
of a 2f-ANOVA design. We therefore systematically assessed
the advantages and disadvantages of a factorial design and the
use of ANOVA for the inclusion of sex as an additional factor
through in silico modeling. We compared one-factorial de-
signs with designs including sex as second factor. With one-
factorial design, testing different sexes means one would have
to perform independent experiments for each sex, therefore
doubling the number of animals used, without providing in-
formation about interaction effects. Contrary to Festing’s find-
ings (25), the addition of an additional factor (sex) is not
without any cost: it yields a very modest increase in total
sample sizes. This increase was smaller when sex was only
investigated in an exploratory rather than a confirmatory man-
ner since a multiple testing correction needs to be applied in
the latter case. Including interaction in the 2f-ANOVA model
is of particular importance as even the presence of small in-
teractions may influence the effect estimates and may lead to
the misinterpretation of data. Considering the marginal in-
creases in sample sizes and thus animal consumption when
an additional factor is included in an experiment, we recom-
mend the inclusion of sex as a second factor.

Of note, similar considerations hold for ANOVA designs
with more than 2 factors. However, these designs are less
common, since they are more difficult to implement in prac-
tice: Typically, not all animals can be analyzed in one batch.
As pointed out in the “Recommendations for the researcher,”
the assignment of samples to batches is a non-trivial task,
since one has to avoid confounding batch effects.
Nevertheless, ANOVA designs with more than 2 factors can
have their merits in well-planned experiments.

To the ease of the experimentalist, we provide an Excel
sheet for power calculations in 2f-ANOVA designs in the
Supplementary Material. Thus, we offer a strategy to

ANOVA Analysis of variance; a statistical test to
check for the presence of differences
within multiple levels of a factor
(ANOVA does not analyze between
which or how many levels the
differences occur); if 1 (2, 3,…)
factors are tested, it is also referred to
as 1 (2, 3,…)—factorial ANOVA

Factor A variable being analyzed
(e.g., age, sex, type of treatment)

Factor level Manifestation of a variable (e.g., sex
factor with factor levels, male and
female)

Relative effect size (often also
termed signal-to-noise ratio)

The absolute difference of the group
mean (here, the mean of all samples
with the same sex and same
treatment) from the overall mean,
normalized by within-group stan-
dard deviation.

Power True positive rate; the probability that a
difference in the data is detected by a
statistical test (e.g., in 10 cases with
differences in the data, a test with a
power of 0.8 (or 80%) detects 8
cases as statistically significant)

Significance level False positive rate; the probability that,
when there is no difference in the
data, a statistically significant
difference is called by the test (e.g.,
in 100 cases with no differences in
the data, a test with a significance
level of 0.05 (or 5%) calls 5 cases as
statistically significant)

Multiple testing Data is analyzed using multiple
statistical tests; the overall
significance level of all tests will be
higher than that of the single tests.
This is usually corrected (e.g., when
performing two tests, both with a 5%
significance level, the overall
significance level is
1 − (0.95 × 0.95) = 0.0975 which is
9.75%)
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successfully design studies including both sexes while
conforming to the requirements of ethical principles and fi-
nancial limitations. Our approach may foster initiatives that
incorporate sex in experimental studies with the ultimate goal
to improve trial design and develop optimal treatment strate-
gies for both women and men.
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